J. Number Theory 133(2013), 1950-1976. CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS II

نویسنده

  • ZHI-Hong Sun
چکیده

Abstract. Let p > 3 be a prime, and let m be an integer with p ∤ m. In the paper we solve some conjectures of Z.W. Sun concerning Pp−1 k=0 2k k 3 /mk (mod p2), Pp−1 k=0 2k k 4k 2k /mk (mod p) and Pp−1 k=0 2k k 2 4k 2k /mk (mod p2). In particular, we show that P p−1 2 k=0 2k k 3 ≡ 0 (mod p2) for p ≡ 3, 5, 6 (mod 7). Let {Pn(x)} be the Legendre polynomials. In the paper we also show that P[ p 4 ](t) ≡ −( 6 p ) Pp−1 x=0( x− 3 2 (3t+5)x+9t+7 p ) (mod p), where t is a rational p−adic integer, [x] is the greatest integer not exceeding x and ( a p ) is the Legendre symbol. As

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences concerning Legendre polynomials III

Suppose that p is an odd prime and d is a positive integer. Let x and y be integers given by p = x2 + dy2 or 4p = x2 + dy2. In this paper we determine x (mod p) for many values of d. For example,

متن کامل

Congruences concerning Legendre Polynomials

Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.

متن کامل

J. Number Theory 143(2014), no.3, 293-319. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

Abstract. For any positive integer n and variables a and x we define the generalized Legendre polynomial Pn(a, x) by Pn(a, x) = Pn k=0 a k −1−a k ( 1−x 2 ). Let p be an odd prime. In this paper we prove many congruences modulo p related to Pp−1(a, x). For example, we show that Pp−1(a, x) ≡ (−1)〈a〉p Pp−1(a,−x) (mod p), where a is a rational p− adic integer and 〈a〉p is the least nonnegative resid...

متن کامل

Congruences concerning Bernoulli numbers and Bernoulli polynomials

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...

متن کامل

Some Congruences Associated with the Equation X = X in Certain Finite Semigroups

Let H be a finite group, Tn the symmetric semigroup of degree n, and let α, β be integers with 0 < α < β. We establish congruences modulo an arbitrary prime for the number sn(α, β,H) of solutions of the equationX α = X in the wreath product H oTn, where n = p, p+1, p+2, p+3. Our results generalise well-known congruences for the number of idempotent elements in Tn, to which they reduce for α = 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013